$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

General Description

The MAX13442E/MAX13444E are fault-protected RS-485 and J1708 transceivers that feature $\pm 80 \mathrm{~V}$ protection from signal faults on communication bus lines. The MAX13442E/MAX13444E feature a reduced slew-rate driver that minimizes EMI and reflections, allowing error-free transmission up to 250kbps. The MAX13443E driver can transmit up to 10Mbps. The high-speed MAX13443E RS-485 tranceiver features $\pm 60 \mathrm{~V}$ protection from signal faults on communication bus lines. These transceivers feature foldback current limit. Each device contains one differential line driver with three-state output and one differential line receiver with three-state input. The 1/4-unitload receiver input impedance allows up to 128 transceivers on a single bus. The devices operate from a 5 V supply. True fail-safe inputs guarantee a logic-high receiver output when the receiver inputs are open, shorted, or connected to an idle data line.
Hot-swap circuitry eliminates false transitions on the data bus during circuit initialization or connection to a live backplane. Short-circuit current-limiting and ther-mal-shutdown circuitry protect the driver against excessive power dissipation, and on-chip $\pm 15 \mathrm{kV}$ ESD protection eliminates costly external protection devices. The MAX13442E/MAX13443E/MAX13444E are available in an 8-pin SO package and are specified over the automotive temperature range.

RS-422/RS-485
Communications
Truck and Trailer Applications

Applications
Telecommunications Systems
Automotive Applications
HVAC Controls

- $\pm 15 \mathrm{kV}$ ESD Protection		
- $\pm 80 \mathrm{~V}$ Fault Protection ($\pm 60 \mathrm{~V}$ MAX13443E)		
- Guaranteed 10Mbps Data Rate (MAX13443E)		
- Hot-Swappable for Telecom Applications		
- True Fail-Safe Receiver Inputs		
- Enhanced Slew-Rate-Limiting Facilitates Error-Free Data Transmission (MAX13442E/MAX13444E)		
- Allow Up to 128 Transceivers on the Bus		
- $7 \mathrm{7V}$ to +12V Common-Mode Input Range		
- $\pm 6 \mathrm{~mA}$ FoldBack Current Limit		
- Industry-Standard Pinout		
	Ordering	formation
PART	TEMP RANGE	PIN-PACKAGE
MAX13442EASA+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX13443EASA+	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO
MAX13444EASA/V+T	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 SO

+Denotes a lead(Pb)-free/RoHS-compliant package.
N denotes an automotive qualified part.
T = Tape and reel.

PART	TYPE	DATA RATE (Mbps)	FAULT PROTECTION $\mathbf{(V)}$	LOW-POWER SHUTDOWN	RECEIVER/DRIVER ENABLE	TRANSCEIVERS ON BUS	HOT SWAP
MAX13442E	$R S-485$	0.25	± 80	Yes	Yes	128	Yes
MAX13443E	$R S-485$	10	± 60	Yes	Yes	128	Yes
MAX13444E	$J 1708$	0.25	± 80	Yes	Yes	128	Yes (only $\overline{R E})$

Pin Configurations and Typical Operating Circuits

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

ABSOLUTE MAXIMUM RATINGS
(Voltages referenced to GND.)
VCC ...

A, B (Note 1) (MAX13442E/MAX13444E) $\pm 80 \mathrm{~V}$
A, B (Note 1) (MAX13443E) .. $\pm 60 \mathrm{~V}$
RO ..-0.3V to ($\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$)
Short-Circuit Duration (RO, A, B)Continuous

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ SO (derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	
Operating Temperature Range	.$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	.$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
oldering Temperature	+260

Note 1: During normal operation, a termination resistor must be connected between A and B in order to guarantee overvoltage protection up to the absolute maximum rating of this device. When not in operation, these devices can withstand fault voltages up to the maximum rating without a termination resistor and will not be damaged.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 2)

SO
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $132^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) $38^{\circ} \mathrm{C} / \mathrm{W}$
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DRIVER						
Differential Driver Output	VOD	Figure 1, RL = 100Ω	2		VCC	V
		Figure 1, RL = 54Ω	1.5		VCC	
Change in Magnitude of Differential Output Voltage	$\Delta \mathrm{V}_{\mathrm{OD}}$	Figure 1, $\mathrm{RL}=100 \Omega$ or 54Ω (Note 3)			0.2	V
Driver Common-Mode Output Voltage	VOC	Figure 1, $\mathrm{RL}=100 \Omega$ or 54Ω		Vcc / 2	3	V
Change in Magnitude of Common-Mode Voltage	$\Delta \mathrm{V}$ OC	Figure 1, $\mathrm{R}_{\mathrm{L}}=100 \Omega$ or 54Ω (Note 3) (MAX13442E/MAX13443E)			0.2	V
DRIVER LOGIC						
Driver-Input High Voltage	VDIH		2			V
Driver-Input Low Voltage	V DIL				0.8	V
Driver-Input Current	IDIN				± 2	$\mu \mathrm{A}$
Driver Short-Circuit Output Current (Note 4)	IOSD	$\mathrm{OV} \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$			+350	mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$	-350			
Driver Short-Circuit Foldback Output Current	IOSDF	$\left(V_{\text {CC }}-1 \mathrm{~V}\right) \leq \mathrm{V}_{\text {OUT }} \leq+12 \mathrm{~V}$ (Note 4)	+25			mA
		$-7 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+1 \mathrm{~V}$ (Note 4)			-25	
Driver-Limit Short-Circuit Foldback Output Current	IOSDL	$V_{\text {OUT }} \geq+20 \mathrm{~V}, \mathrm{RL}_{\text {L }}=100 \Omega$	+6			mA
		VOUT $\leq-15 \mathrm{~V}, \mathrm{RL}=100 \Omega$			-6	

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RECEIVER							
Input Current	${ }_{\text {I }}^{\text {, }}$ B	A, B receive mode	$\mathrm{V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{V}_{\mathrm{A}, \mathrm{B}}=12 \mathrm{~V}$			250	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{A}, \mathrm{B}}=-7 \mathrm{~V}$			-150	
			$\mathrm{V}_{\mathrm{A}, \mathrm{B}}= \pm 80 \mathrm{~V}$			± 6	mA
Receiver-Differential Threshold Voltage	$V_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+12 \mathrm{~V}$		-200		-50	mV
Receiver-Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$			25			mV
RECEIVER LOGIC							
Output-High Voltage	VOH	Figure 2, $\mathrm{IOH}=-1.6 \mathrm{~mA}$		VCC - 0.6			V
Output-Low Voltage	VOL	Figure 2, $\mathrm{IOL}=1 \mathrm{~mA}$				0.4	V
Three-State Output Current at Receiver	IozR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{A}}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$				± 1	$\mu \mathrm{A}$
Receiver Input Resistance	RIN	$-7 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+12 \mathrm{~V}$		48			k Ω
Receiver Output Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{RO}} \leq \mathrm{V}_{\mathrm{CC}}$				± 95	mA
CONTROL							
Control-Input High Voltage	$\mathrm{V}_{\text {CIH }}$	DE, $\overline{\mathrm{DE}}, \overline{\mathrm{RE}}$		2			V
Input-Current Latch During First Rising Edge	IIN	$D E, \overline{R E}$			90		$\mu \mathrm{A}$
SUPPLY CURRENT							
Normal Operation	IcC	No load, $\mathrm{DI}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\begin{aligned} & \mathrm{DE}=V_{\mathrm{CC}}, \overline{\mathrm{RE}}=\mathrm{GND}(\mathrm{MAX13442E}) \\ & (\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{GND})(\text { MAX13444E}) \end{aligned}$			30	mA
			$\begin{aligned} & \left(\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{RE}}=\mathrm{GND}\right) \\ & (\mathrm{MAX} 13443 \mathrm{E}) \end{aligned}$			10	
Supply Current in Shutdown Mode	ISHDN	$\begin{aligned} & \mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}} \\ & (\text { MAX13442E/MAX13443E) } \end{aligned}$				20	$\mu \mathrm{A}$
		$\mathrm{DE}=\mathrm{GND}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (MAX13442E/MAX13443E)				10	
		$\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\text {CC }}(\mathrm{MAX13444E})$				100	
		$\overline{\mathrm{DE}}=\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}(\mathrm{MAX13444E})$				10	
Supply Current with Output Shorted to $\pm 60 \mathrm{~V}$	ISHRT	$\mathrm{DE}=\mathrm{GNL}$ output in	$\begin{aligned} & \text { D, } \overline{\mathrm{RE}}=\text { GND, no load } \\ & \text { three-state (MAX13443E) } \end{aligned}$			± 15	mA

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

PROTECTION SPECIFICATIONS

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Overvoltage Protection		$\begin{aligned} & \mathrm{A}, \mathrm{~B} ; \mathrm{RSOURCE}=0 \Omega, \\ & \mathrm{R}_{\mathrm{L}}=54 \Omega \end{aligned}$		MAX13442E/ MAX13444E	± 80			V
				MAX13443E	± 60			
ESD Protection		A, B	Human Body Model			± 15		kV

SWITCHING CHARACTERISTICS (MAX13442E/MAX13444E)

$\left(\mathrm{V}_{C C}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	tpLHA, tpLHB	Figure 3, $\mathrm{RL}_{\mathrm{L}}=54 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$ (MAX13442E)	2000		ns
		RDIFF $=60 \Omega$, CDIFF $=100 \mathrm{pF}$ (MAX13444E)			
Driver Differential Propagation Delay	tDPLH, tDPHL	$R \mathrm{~L}=54 \Omega, C L=50 p F$, Figure 4		2000	ns
Driver Differential Output Transition Time	tLH,thL	$R \mathrm{~L}=54 \Omega, \mathrm{CL}=50 \mathrm{pF}$, Figure 4	200	2000	ns
Driver Output Skew	tskewab, tskevia	$\begin{aligned} & \mathrm{RL}=54 \Omega, \mathrm{CL}=50 \mathrm{pF}, \\ & \text { tSKEWAB }=\text { ItpLHA }- \text { tpHLBI, } \\ & \text { tSKEWBA }=\text { ItpLHB }- \text { tPHLAl } \end{aligned}$		350	ns
Differential Driver Output Skew	tDSKEW			200	ns
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$		250		kbps
Driver Enable Time to Output High	tpDZH	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, Figure 5		2000	ns
Driver Disable Time from Output High	tPDHZ	RL $=500 \Omega$, $C_{L}=50 \mathrm{pF}$, Figure 5		2000	ns
Driver Enable Time from Shutdown to Output High	tPDHS	$R \mathrm{~L}=500 \Omega, \mathrm{CL}=50 \mathrm{pF}$, Figure 5		4.2	$\mu \mathrm{s}$
Driver Enable Time to Output Low	tPDZL	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, Figure 6		2000	ns
Driver Disable Time from Output Low	tpDLZ	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, Figure 6		2000	ns
Driver Enable Time from Shutdown to Output Low	tPDLS	$R \mathrm{~L}=500 \Omega, C \mathrm{~L}=50 \mathrm{pF}$, Figure 6		4.2	$\mu \mathrm{S}$
Driver Time to Shutdown	tsHDN	$R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$		800	ns
Receiver Propagation Delay	tRPLH, tRPHL	$C_{L}=20 p F, V_{I D}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, Figure 7		2000	ns
Receiver Output Skew	trSKEW	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{t}_{\text {RSKEW }}=\mathrm{ItRPLH}^{\text {- }}$ tRPHLI		200	ns
Receiver Enable Time to Output High	tRPZH	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$, Figure 8		2000	ns
Receiver Disable Time from Output High	tRPHZ	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		2000	ns
Receiver Wake Time from Shutdown	trPWAKE	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$, Figure 8		4.2	$\mu \mathrm{S}$
Receiver Enable Time to Output Low	trPZL	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		2000	ns
Receiver Disable Time from Output Low	trPLZ	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		2000	ns
Receiver Time to Shutdown	tSHDN	$R \mathrm{~L}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$		800	ns

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

SWITCHING CHARACTERISTICS (MAX13443E)

$\left(\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}\right.$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Driver Propagation Delay	$\begin{aligned} & \text { tPLHA, } \\ & \text { tPLHB } \end{aligned}$	$R_{L}=27 \Omega, C_{L}=50 p F$, Figure 3		60	ns
Driver Differential Propagation Delay	tDPLH, tDPHL	$R_{L}=54 \Omega, C_{L}=50 \mathrm{pF}$, Figure 4		60	ns
Driver Differential Output Transition Time	tLH,tHL	$R_{L}=54 \Omega, C_{L}=50 p F$, Figure 4		25	ns
Driver Output Skew	tSKEWAB, tSKEWBA	$\begin{aligned} & \text { RL = 54 } \Omega, C \mathrm{CL}=50 \mathrm{pF}, \\ & \text { tSKEWAB }=\text { ItpLHA }- \text { tpHLBl, } \\ & \text { tSKEWBA }=\text { ItPLHB - tPHLAl } \end{aligned}$		10	ns
Differential Driver Output Skew	tDSKEW	$\begin{aligned} & R_{L}=54 \Omega, C_{L}=50 \mathrm{pF}, \\ & \text { tDSKEW }=\text { ItDPLH }-\operatorname{tDPHL} \end{aligned}$		10	ns
Maximum Data Rate	$f_{\text {max }}$		10		Mbps
Driver Enable Time to Output High	tpDzH	$R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$, Figure 5		1200	ns
Driver Disable Time from Output High	tPDHZ	$R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$, Figure 5		1200	ns
Driver Enable Time from Shutdown to Output High	tPDHS	$R \mathrm{~L}=500 \Omega, \mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$, Figure 5		4.2	$\mu \mathrm{s}$
Driver Enable Time to Output Low	tPDZL	$R_{L}=500 \Omega, C_{L}=50 p F$, Figure 6		1200	ns
Driver Disable Time from Output Low	tpdLZ	$R_{L}=500 \Omega, C_{L}=50 p F$, Figure 6		1200	ns
Driver Enable Time from Shutdown to Output Low	tPDLS	$R \mathrm{~L}=500 \Omega, C_{L}=50 \mathrm{pF}$, Figure 6		4.2	$\mu \mathrm{S}$
Driver Time to Shutdown	tSHDN	$R_{L}=500 \Omega, C_{L}=50 p F$, Figure 6		800	ns
Receiver Propagation Delay	tRPLH, tRPHL	$\mathrm{CL}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{VID}=2 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$, Figure 7		85	ns
Receiver Output Skew	trSkEW			15	ns
Receiver Enable Time to Output High	tRPZH	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		400	ns
Receiver Disable Time from Output High	tRPHZ	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		400	ns
Receiver Wake Time from Shutdown	trPWAKE	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		4.2	$\mu \mathrm{s}$
Receiver Enable Wake Time from Shutdown	trPSH	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		400	ns
Receiver Disable Time from Output Low	trPLZ	$R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}$, Figure 8		400	ns
Receiver Time to Shutdown	tshDN	$R_{L}=500 \Omega, C_{L}=50 \mathrm{pF}$		800	ns

Note 3: $\Delta \mathrm{V}_{\mathrm{OD}}$ and $\Delta \mathrm{V}_{\mathrm{OC}}$ are the changes in $\mathrm{V}_{O D}$ and V_{OC}, respectively, when the DI input changes state.
Note 4: The short-circuit output current applies to peak current just before foldback current limiting. The short-circuit foldback output current applies during current limiting to allow a recovery from bus contention.

$\pm 15 k V$ ESD-Protected, ± 80 V Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics

SHUTDOWN SUPPLY CURRENT
vs. TEMPERATURE

RECEIVER OUTPUT VOLTAGE
vs. TEMPERATURE

RECEIVER OUTPUT CURRENT vs. OUTPUT-HIGH VOLTAGE

DRIVER OUTPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGE

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

A, b CURRENT vs. A, B VOLTAGE
(TO GROUND)

$\pm 15 k V$ ESD-Protected, ± 80 V Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

\qquad

Figure 1. Driver VOD and VOC

Figure 2. Receiver $\mathrm{VOH}_{\mathrm{O}}$ and $\mathrm{VOL}_{\mathrm{OL}}$

Figure 3. Driver Propagation Times

Figure 4. Driver Differential Output Delay and Transition Times

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Figure 5. Driver Enable and Disable Times

Figure 6. Driver Enable and Disable Times

Figure 7. Receiver Propagation Delay

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Test Circuits and Waveforms (continued)

Figure 8. Receiver Enable and Disable Times
Note 5: The input pulse is supplied by a generator with the following characteristics: $f=5 \mathrm{MHz}, 50 \%$ duty cycle; $\mathrm{tr}_{\mathrm{r}} \leq 6 \mathrm{~ns} ; \mathrm{Zo}=50 \Omega$. Note 6: C_{L} includes probe and stray capacitance.

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Pin Description

PIN		NAME	
MAX13442E MAX13443E	MAX13444E		

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

\qquad Function Tables

Table 1. MAX13442E/MAX13443E (RS-485/RS-422)

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{\mathbf{R E}}$	DE	DI	A	\mathbf{B}
0	0	X	High-Z	High-Z
0	1	0	0	1
0	1	1	1	0
1	0	X	Shutdown	Shutdown
1	1	0	0	1
1	1	1	1	0

$X=$ Don't care.
Table 2. MAX13444E (J1708) Application

TRANSMITTING				
INPUTS		OUTPUTS		CONDITIONS
TXD	$\overline{\mathbf{D E}}$	A	B	-
0	1	High-Z	High-Z	-
1	1	High-Z	High-Z	-
0	0	0	1	Dominant state
1	0	High-Z	High-Z	Recessive state

Table 3. MAX13442E/MAX13443E (RS-485/RS-422)

RECEIVING			
INPUTS			
$\overline{\mathbf{R E}}$	$\mathbf{D E}$	$\mathbf{(\mathbf { V } _ { \mathbf { A } } - \mathbf { V } _ { \mathbf { B } })}$	OUTPUTS
0	$\mathrm{R} \mathbf{R}$		
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	Open/shorted	1
1	1	X	High- Z
1	0	X	Shutdown

$X=$ Don't care.
$X=$ Don't care.

Table 4. MAX13444E (RS-485/RS-422)

RECEIVING			
INPUTS			
$\overline{\mathbf{R E}}$	$\overline{\mathbf{D E}}$	$\left(\mathbf{V}_{\mathbf{A}}-\mathbf{V}_{\mathbf{B}}\right)$	$\mathbf{R O}$
0	X	$\geq-0.05 \mathrm{~V}$	1
0	X	$\leq-0.2 \mathrm{~V}$	0
0	X	Open/shorted	1
1	0	X	High-Z
1	1	X	Shutdown

X = Don't care.

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Abstract

Detailed Description The MAX13442E/MAX13443E/MAX13444E fault-protected transceivers for RS-485/RS-422 and J1708 communication contain one driver and one receiver. These devices feature fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled (see the True Fail-Safe section). All devices have a hot-swap input structure that prevents disturbances on the differential signal lines when a circuit board is plugged into a hot backplane (see the Hot-Swap Capability section). The MAX13442E/MAX13444E feature a reduced slew-rate driver that minimizes EMI and reduces reflections caused by improperly terminated cables, allowing error-free data transmission up to 250 kbps (see the Reduced EMI and Reflections section). The MAX13443E driver is not slewrate limited, allowing transmit speeds up to 10 Mbps .

Driver

The driver accepts a single-ended, logic-level input (DI) and transfers it to a differential, RS-485/RS-422 level output (A and B). Deasserting the driver enable places the driver outputs (A and B) into a high-impedance state.

Receiver
The receiver accepts a differential, RS-485/RS-422 level input (A and B), and transfers it to a single-ended, logic-level output (RO). Deasserting the receiver enable places the receiver inputs (A and B) into a high-impedance state (see Tables 1-4).

Low-Power Shutdown

The MAX13442E/MAX13443E/MAX13444E offer a lowpower shutdown mode. Force DE low and $\overline{\mathrm{RE}}$ high to shut down the MAX13442E/MAX13443E. Force DE and $\overline{\mathrm{RE}}$ high to shut down the MAX13444E. A time delay of 50 ns prevents the device from accidentally entering shutdown due to logic skews when switching between transmit and receive modes. Holding DE low and $\overline{R E}$ high for at least 800 ns guarantees that the MAX13442E/MAX13443E enter shutdown. In shutdown, the devices consume a maximum $20 \mu \mathrm{~A}$ supply current.

$\pm 80 V$ Fault Protection

The driver outputs/receiver inputs of RS-485 devices in industrial network applications often experience voltage faults resulting from shorts to the power grid that exceed the -7 V to +12 V range specified in the EIA/TIA-485 standard. In these applications, ordinary RS-485 devices (typical absolute maximum -8 V to +12.5 V) require costly external protection devices. To reduce system complexity and eliminate this need for external protection, the dri-
ver outputs/receiver inputs of the MAX13442E/ MAX 13444 E withstand voltage faults up to $\pm 80 \mathrm{~V}(\pm 60 \mathrm{~V}$ for the MAX13443E) with respect to ground without damage. Protection is guaranteed regardless whether the device is active, shut down, or without power.

True Fail-Safe
The MAX13442E/MAX13443E/MAX13444E use a -50 mV to -200 mV differential input threshold to ensure true fail-safe receiver inputs. This threshold guarantees the receiver outputs a logic-high for shorted, open, or idle data lines. The -50 mV to -200 mV threshold complies with the $\pm 200 \mathrm{mV}$ threshold EIA/TIA-485 standard.

$\pm 15 \mathrm{kV}$ ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against ESD encountered during handling and assembly. The MAX13442E/MAX13443E/MAX13444E receiver inputs/ driver outputs (A, B) have extra protection against static electricity found in normal operation. Maxim's engineers have developed state-of-the-art structures to protect these pins against $\pm 15 \mathrm{kV}$ ESD without damage. After an ESD event, the MAX13442E/MAX13443E/ MAX13444E continue working without latchup.
ESD protection can be tested in several ways. The receiver inputs are characterized for protection to $\pm 15 \mathrm{kV}$ using the Human Body Model.

ESD Test Conditions

ESD performance depends on a number of conditions. Contact Maxim for a reliability report that documents test setup, methodology, and results.

Human Body Model

Figure 9a shows the Human Body Model, and Figure 9 b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor.

Driver Output Protection

Two mechanisms prevent excessive output current and power dissipation caused by faults or bus contention. The first, a foldback current limit on the driver output stage, provides immediate protection against short circuits over the whole common-mode voltage range. The second, a thermal shutdown circuit, forces the driver outputs into a high-impedance state if the die temperature exceeds $+160^{\circ} \mathrm{C}$. Normal operation resumes when the die temperature cools to $+140^{\circ} \mathrm{C}$, resulting in a pulsed output during continuous short-circuit conditions.

$\pm 15 \mathrm{kV}$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Hot-Swap Capability
Hot-Swap Inputs
Inserting circuit boards into a hot, or powered, backplane may cause voltage transients on $D E, \overline{R E}$, and receiver inputs A and B that can lead to data errors. For example, upon initial circuit board insertion, the processor undergoes a power-up sequence. During this period, the high-impedance state of the output drivers makes them unable to drive the MAX13442E/MAX13443E/ MAX13444E enable inputs to a defined logic level. Meanwhile, leakage currents of up to $10 \mu \mathrm{~A}$ from the high-impedance output, or capacitively coupled noise from Vcc or GND, could cause an input to drift to an incorrect logic state. To prevent such a condition from occurring, the MAX13442E/MAX13443E/MAX13444E feature hot-swap input circuitry on DE, and $\overline{R E}$ to guard against unwanted driver activation during hot-swap situations. The MAX13444E has hot-swap input circuitry only on $\overline{\mathrm{RE}}$. When VCC rises, an internal pulldown (or pullup for $\overline{R E}$) circuit holds DE low for at least $10 \mu \mathrm{~s}$, and until the current into DE exceeds 200 $\mu \mathrm{A}$. After the initial power-up sequence, the pulldown circuit becomes transparent, resetting the hot-swap tolerable input.

Figure 9a. Human Body ESD Test Model

Figure 9b. Human Body Model Current Waveform

Hot-Swap Input Circuitry

At the driver-enable input (DE), there are two NMOS devices, M1 and M2 (Figure 10). When VCC ramps from zero, an internal 15μ s timer turns on M2 and sets the SR latch, which also turns on M1. Transistors M2, a 2 mA current sink, and M1, a $100 \mu \mathrm{~A}$ current sink, pull DE to GND through a $5.6 \mathrm{k} \Omega$ resistor. M2 pulls DE to the disabled state against an external parasitic capacitance up to 100 pF that may drive DE high. After $15 \mu \mathrm{~s}$, the timer deactivates M2 while M1 remains on, holding DE low against three-state leakage currents that may drive DE high. M1 remains on until an external current source overcomes the required input current. At this time, the SR latch resets M1 and turns off. When M1 turns off, DE reverts to a standard, high-impedance CMOS input. Whenever VCC drops below 1V, the input is reset.
A complementary circuit for $\overline{\mathrm{RE}}$ uses two PMOS devices to pull $\overline{\mathrm{RE}}$ to V_{CC}.

Figure 10. Simplified Structure of the Driver Enable Pin (DE)

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Applications Information

128 Transceivers on the Bus

The MAX13442E/MAX13443E/MAX13444E transceivers 1/4-unit-load receiver input impedance ($48 \mathrm{k} \Omega$) allows up to 128 transceivers connected in parallel on one communication line. Connect any combination of these devices, and/or other RS-485 devices, for a maximum of 32 -unit loads to the line.

Reduced EMI and Reflections

The MAX13442E/MAX13444E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 11 shows the driver output waveform and its Fourier analysis of a 125 kHz signal transmitted by a MAX13443E. High-frequency harmonic components with large amplitudes are evident.
Figure 12 shows the same signal displayed for the MAX13442E transmitting under the same conditions. Figure 12's high-frequency harmonic components are much lower in amplitude, compared with Figure 11's, and the potential for EMI is significantly reduced.

Figure 11. Driver Output Waveform and FFT Plot of the MAX13443E Transmitting a 125 kHz Signal

In general, a transmitter's rise time relates directly to the length of an unterminated stub, which can be driven with only minor waveform reflections. The following equation expresses this relationship conservatively:

$$
\text { length }=\text { tRISE } /(10 \times 1.5 \mathrm{~ns} / \mathrm{ft})
$$

where tRISE is the transmitter's rise time.
For example, the MAX13442E's rise time is typically 800ns, which results in excellent waveforms with a stub length up to 53 ft . A system can work well with longer unterminated stubs, even with severe reflections, if the waveform settles out before the UART samples them.

RS-485 Applications
The MAX13442E/MAX13443E/MAX13444E transceivers provide bidirectional data communications on multipoint bus transmission lines. Figure 13 shows a typical network application circuit. The RS-485 standard covers line lengths up to 4000 ft . To minimize reflections and reduce data errors, terminate the signal line at both ends in its characteristic impedance, and keep stub lengths off the main line as short as possible.

Figure 12. Driver Output Waveform and FFT Plot of the MAX13442E Transmitting a 125 kHz Signal

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

J1708 Applications
The MAX13444E is designed for J1708 applications. To configure the MAX13444E, connect $\overline{\mathrm{DE}}$ and $\overline{\mathrm{RE}}$ to GND. Connect the signal to be transmitted to TXD. Terminate the bus with the load circuit as shown in Figure 14. The drivers used by SAE J1708 are used in a dominantmode application. $\overline{\mathrm{DE}}$ is active low; a high input on $\overline{\mathrm{DE}}$ places the outputs in high impedance. When the driver is disabled (TXD high or DE high), the bus is pulled high by external bias resistors R1 and R2. Therefore, a logic-level high is encoded as recessive. When all transceivers are
idle in this configuration, all receivers output logic-high because of the pullup resistor on A and pulldown resistor on B. R1 and R2 provide the bias for the recessive state. C1 and C2 combine to form a lowpass filter, effective for reducing FM interference. R2, C1, R4, and C2 combine to form a 1.6 MHz lowpass filter, effective for reducing AM interference. Because the bus is unterminated, at high frequencies, R3 and R4 perform a pseudotermination. This makes the implementation more flexible, as no specific termination nodes are required at the ends of the bus.

Figure 13. MAX13442E/MAX13443E Typical RS-485 Network

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

Figure 14. J1708 Application Circuit (See Tables 2 and 4)

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO	$\mathrm{S} 8+4$	$\underline{21-0041}$	$\underline{90-0096}$

Pin Configurations and Typical Operating Circuits (continued)

$\pm 15 k V$ ESD-Protected, $\pm 80 \mathrm{~V}$ Fault-Protected, Fail-Safe RS-485/J1708 Transceivers

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 05$	Initial release	-
1	$3 / 06$	Corrected the part numbers in the conditions for ΔV Oc in the DC Electrical Characteristics table; corrected the A, B current units from mA to μA for the A, B Current vs. A, B Voltage (to Ground) graphs in the Typical Operating Characteristics section	2,7
2	$11 / 10$	Added lead(Pb)-free parts to the Ordering Information table; added the soldering temperature to the Absolute Maximum Ratings section; updated Table 2 outputs	$1,2,12$
3	$3 / 11$	Added an automotive qualified part to the Ordering Information; added the Package Thermal Characteristics section	1,2

